Q-Systems and Extensions of Completely Unitary Vertex Operator Algebras

نویسندگان

چکیده

Abstract Complete unitarity is a natural condition on CFT-type regular vertex operator algebra (VOA), which ensures that its modular tensor category (MTC) unitary. In this paper we show any unitary (conformal) extension $U$ of completely VOA $V$ Our method to relate with Q-system $A_U$ in the $C^*$-tensor $\textrm{Rep}^{\textrm{u}}(V)$ $V$-modules. We also update main result [ 30] cases by showing $\textrm{Rep}^{\textrm{u}}(U)$ $U$-modules equivalent $\textrm{Rep}^{\textrm{u}}(A_U)$ $A_U$-modules as MTCs. As an application, obtain infinitely many new (regular and) VOAs including all $c<1$ VOAs. latter are one-to-one correspondence (irreducible) conformal nets same central charge $c$, classification given 29].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple currents and extensions of vertex operator algebras

We consider how a vertex operator algebra can be extended to an abelian intertwining algebra by a family of weak twisted modules which are simple currents associated with semisimple weight one primary vectors. In the case that the extension is again a vertex operator algebra, the rationality of the extended algebra is discussed. These results are applied to affine Kac-Moody algebras in order to...

متن کامل

Certain extensions of vertex operator algebras of affine type

We generalize Feigin and Miwa’s construction of extended vertex operator (super)algebras Ak(sl(2)) for other types of simple Lie algebras. For all the constructed extended vertex operator (super)algebras, irreducible modules are classified, complete reducibility of every module is proved and fusion rules are determined modulo the fusion rules for vertex operator algebras of affine type.

متن کامل

Module categories of simple current extensions of vertex operator algebras

In this article, we study module categries of simple current extensions of vertex operator algebras. Under certain assumptions, we show that every module for a rational vertex operator algebra be lifted to a twisted module for an extended algebra with an abelian symmetry.

متن کامل

Vertex Operator Algebras And

Let V be a vertex operator algebra. We construct a sequence of associative algebras A n (V) (n = 0; 1; 2; :::) such that A n (V) is a quotient of A n+1 (V) and a pair of functors between the category of A n (V)-modules which are not A n?1 (V)-modules and the category of admissible V-modules. These functors exhibit a bijection between the simple modules in each category. We also show that V is r...

متن کامل

To Vertex Operator Algebras

In this exposition, we continue the discussions of Dong [D2] and Li [L]. We shall prove an S3-symmetry of the Jacobi identity, construct the contragredient module for a module for a vertex operator algebra and apply these to the construction of the vertex operator map for the moonshine module. We shall introduce the notions of intertwining operator, fusion rule and Verlinde algebra. We shall al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnaa300